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Abstract
Recent advances in nanotechnology and atomic physics may allow for a
demonstration of the dynamical Casimir effect. An array of film bulk acoustic
resonators (FBARs) coherently driven at twice the resonant frequency of a
high-quality electromagnetic cavity can generate a stationary state of Casimir
photons. These are detected using an alkali atom beam prepared in an
inverted population of hyperfine states, with an induced superradiant burst
producing a detectable radio-frequency signal. We describe here the results of
the simulations of the dynamics of superradiance and superfluorescence, with
the aim to optimize the parameters for the detectability of Casimir photons.
When the superradiant lifetime is shorter than the dissipation time, we find
superradiant evolution to be similar in character but dramatically slower than
in the usual lossy case.

PACS numbers: 12.20.Fv, 42.50.Pq, 85.85.+j, 42.50.Lc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Observable effects due to the change in the boundary conditions of quantum fields, like the
creation of particles in an expanding universe [1] or the Casimir force [2], provide crucial
information on quantum vacuum at the macroscopic level. After the recent results on Casimir
forces, with measurements performed in a variety of geometries ranging from the original
parallel plane [3, 4] to the sphere plane [5–9] and crossed cylinders [10], there is interest in
understanding dissipative effects of vacuum fluctuations, especially its interplay with relativity
[11–14]. This dissipation mechanism should induce irradiation of photons, a phenomenon
also known as dynamical Casimir effect [15–18]. This can be understood both as the creation
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of particles under non-adiabatic changes in the boundary conditions of quantum fields, or
as classical parametric amplification with the zero-point energy of a vacuum field mode as
input state. In this paper, following on the proposal described in [19], we describe a model
for the superradiant amplification scheme with particular emphasis on its dynamics and the
optimization of the involved parameters.

2. Generation and detection of Casimir photons

As discussed in [19], under parametric amplification in an electromagnetic cavity an initial
state of N0 photons with frequency within the resonance bandwidth of the fundamental mode
of the cavity ω is transformed into a squeezed state with an average number of photons growing
in time as [16–18]

NCas(t) = N0 sinh2(ωmechεt), (1)

provided that the parametric resonance condition with a mechanical driving at a frequency
ωmech = 2ω is fulfilled. The term ωmechε in the hyperbolic sine function represents the
squeezing parameter, with the modulation depth ε = v/c, where v is the velocity of the
resonator and c is the speed of light. This exponential growth is eventually limited by the photon
leakage of the cavity expressed through its quality factor Q, which saturates at the hold time
τ = Q/ω, reaching a maximum photon population

Nmax
Cas = NCas(τ ) = N0 sinh2(2Qε). (2)

Given an initial number of photons in the cavity, which will be attributable to the quantum
vacuum at temperatures such that kBT � h̄ω (see also [20] for a detailed discussion of
the black-body noise), the average number of photons at saturation in equation (2) strongly
depends on the product of two parameters, Q and ε, which can be on the order of 108 and 10−8

respectively. The expected saturated power initiated by Casimir emission is

PCas = Nmax
Cas

h̄ω

τ
(3)

and for a 3.0 GHz FBAR resonator and Qε � 1, the saturated power is 3 × 10−22 W, which
is too low to be detectable using current technology. This demands the use of an efficient,
nearly quantum limited, photon detector in the radio-frequency range. Ultra-sensitive atomic
detection schemes can be exploited for detecting Casimir photons by preparing an ensemble of
population-inverted atoms in a particular hyperfine state, which for alkali atoms ranges from
0.2 GHz for Li to 9 GHz for Cs, whose transition frequency corresponds to the cavity resonance.
An additional amplification process is available in which the weak Casimir signal triggers the
stimulated emission of the ensemble of atoms. This effect is a form of superradiance [21, 22].
The hyperfine transition in the ground state occurs through a magnetic dipole interaction, and
its natural lifetime in free space is approximately

T1 ≈ 4π

µ0

3h̄

4µ2
B(ω/c)3

, (4)

where µB is the Bohr magneton and µ0 is the magnetic permeability in vacuum. This natural
lifetime in free space is favourably reduced inside a resonant cavity due to the modification of
density of states [23, 24],

T cav
1 = 4π2

3Q

V

λ3
T1 ≈ 4π

µ0

h̄V

8πµ2
BQ

, (5)
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where V is the cavity mode volume. For a few GHz cavity with 1 cm2 cross-sectional area
and Q = 108, the natural lifetime is reduced by a factor of 1010. In spite of this cavity-
enhanced spontaneous rate, the typical hyperfine transition lifetime for the alkali atoms is still
impractically long, on the order of 103 − 105 s. To shorten this timescale, let us suppose
to inject Nat excited atoms into the cavity. The Casimir field acts on all atoms, stimulating
emission on a time scale of the superradiant lifetime, defined as TSR = T cav

1

/
Nat, which is in

the millisecond range for Nat ≈ 108 or less. An atomic density large enough will then induce
a superradiant burst with peak power of PSR ≈ Nath̄ω/TSR, increasing quadratically with the
number of atoms. Considering a few GHz resonator with 108 atoms and TSR = 10−3 s, yields
PSR = 10−13 W, a billionfold improvement over the power without superradiant amplification
as in equation (3).

Spontaneous emission into the cavity mode by the atoms will also trigger a superradiant
burst, a process also known as superfluorescence. To distinguish this source of background
from the Casimir-stimulated superradiance signal, one may study the temporal intensity
envelope of the amplified photons. Both the average delay (TD) of the peak intensity from the
initial excitation of the atomic population and its fluctuation (�TD) are reduced with increasing
number of resonant photons Nph initially present [25]:

TD = TSRln

(
Nat

1 + Nph

)
, �TD = 2TSR/

√
1 + Nph. (6)

It should be noted that these standard results follow when the cavity lifetime is much shorter
than the superradiant lifetime. For very high Q, the system of coupled equations of motion
must be integrated directly. Tailoring the atomic number can further distinguish the Casimir-
stimulated superradiance from superfluorescent pulses. In order for the superradiant pulse
to develop fully, the growth rate must exceed any decay process, which is primarily due to
Doppler dephasing in the atomic cloud, and the atoms must remain in the interaction region
for a time longer than the delay time. A proper choice of Nat may suppress superfluorescence
relative to Casimir superradiance provided that the atoms will be removed from the cavity
after the expected Casimir delay time but prior to the superfluorescence delay (Nph = 0 in
equation (6)). The superradiant emission can be detected by coupling a power or field detector
to the cavity, with response time small enough to resolve one superradiant lifetime. One
issue with this direct measurement is the possible reduction of the quality factor of the cavity
especially for large coupling efficiency. Micro-bolometers mounted on etched ‘spider-webs’
have an ultimate sensitivity of 10−16 W Hz− 1

2 in the GHz range [26]. Spectrum analysers are
sensitive to sub-fW RF power of kHz bandwidth [27], and the temporal profile of the burst
can be reconstructed through vector analysis.

3. Superradiant amplification model

To validate the qualitative estimates in equations (1)–(6), it is necessary to simulate the
dynamics of an atomic beam travelling through a low dissipation cavity. We shall discuss
here specifically Na atoms initially optically pumped into the |F = 2,mF = 2〉 ground
state, though the approach is general. Let us consider the second-quantized Hamiltonian with
relativistic and hyperfine corrections absorbed into the unperturbed atom term H atom [28],

H =
N∑

j=1

H atom
j − e

mj

pj · A(rj ) +
e2

2mj

|A(rj )|2 − µj · B(rj ) +
∑

λ

h̄ωλ

(
â
†
λâλ + 1/2

)
. (7)
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Figure 1. Detectability plot in the ε−Q plane. Depicted from top to bottom are the regions in which
direct detection is possible with state-of-art radiofrequency detectors, the region where superradiant
amplification extends the range of detection, and the region experimentally inaccessible also to
superradiant amplification, with its lower limit due to the speed of micro-bolometers and heterodyne
receivers of the current generation. The dashed line corresponds to the benchmark values of Q and
ε satisfying Qε = 1 which are at the edge of current technology of superconducting cavities and
nanotechnology.

The subscripts j and λ are the atom and field mode index, respectively, ωλ is the mode angular
frequency. The fields A(rj ) and B(rj ) = ∇ × A(rj ) are defined in terms of field profiles
functions U(rj ) and creation and annihilation operators (a, a†) as

A(rj ) =
∑

λ

√
h̄

2ε0ωλ

[
Uλ(rj )âλ + U∗

λ(rj )â
†
λ

]
(8)

B(rj ) = i
∑

λ

√
µ0h̄ωλ/2

[
k̂(rj ) × U(rj )âλ − k̂(rj ) × U(rj )

∗â†
λ

]
, (9)

where the field profile functions form an orthonormal set and the a, a† operators fulfil the
usual commutation relationships,∫

d3r Uλ(rj )U∗
λ′(rj ) = δλλ′ ; [

âλ, â
†
λ′
] = δλλ′ ; [âλ, âλ′ ] = [

â
†
λ, â

†
λ′
] = 0. (10)

Given no initial population on an upper state of an electric dipole transition and no initial
or applied field resonant with the same, the second and the third terms in equation (7) can
be ignored and each atom evolves only within the manifold of ground hyperfine states. The
atomic Hamiltonian then can be represented by an 8 × 8 matrix and the Heisenberg equations
of motion derived. To simplify the discussion, let us assume a cylindrically symmetric cavity
with field propagation (k̂) primarily along the cavity axis (ẑ), with quantization axis along
the cavity axis, so that the active modes will be circularly polarized. If we also assume the
ideal case where the Na atoms are prepared in the |F = 2,mF = 2〉 state, then only the
|F = 2,mF = 2〉 − |F = 1,mF = 1〉 transition will be active and the Hamiltonian can be

4
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reduced to

H =
N∑

j=1

(
h̄

(
� − k · vj

)
µ−B+(rj )

µ+B−(rj ) 0

)
+

∑
λ

h̄ωλ

(
â
†
λâλ + 1/2

)
, (11)

using the standard notation for polarization,

µ = µ+ε̂+ + µ−ε̂− + µzẑ, (12)

and likewise for B and U with ε̂± = (x̂± ŷ)/
√

2. The hyperfine transition resonance frequency
� ≡ {

H atom
22 − H atom

11 − µF=2
z BDC

z (rj ) + µF=1
z BDC

z (rj )
}/

h̄ can be tuned with an applied DC
magnetic field along the quantization axis. Furthermore, given µ+ = µ− ≡ µ, it is convenient
to define the Rabi frequency coefficient χλ(rj ) ≡ µ

√
µ0h̄ωλ/2Uλ(rj )/h̄ and employ Pauli

matrix operators in writing the Hamiltonian as

H =
∑

λ

h̄ωλ

(
â
†
λâλ + 1/2

)
+

N∑
j=1

{
1

2
h̄(� − k · vj )(σ̂0j + σ̂zj )

− ih̄
∑

λ

[
χλ(rj )σ̂+j âλ − χ∗

λ (rj )σ̂−j â
†
λ

]}
. (13)

Here it is understood that the field operators represent only right circular polarization and the
atom operators act only on operators of the same atom. The Heisenberg equations of motion
resolve to

˙̂σ zj = −2
∑

λ

{
χλ(rj )σ̂+j âλ + χ∗

λ (rj )σ̂−j â
†
λ

}
(14)

˙̂σ +j = i(� − k · vj )σ̂+j +
∑

λ

χ∗
λ (rj )σ̂zj â

†
λ (15)

˙̂aλ = −iωλâλ +
N∑

j=1

χ∗
λ (rj )σ̂−j . (16)

Note that total energy and excitation number are conserved in a lossless system as well as
the Bloch vector length. Optical losses from the cavity can be included by adding a negative
imaginary loss rate, � = ωλ/2Q, to the mode frequency. In assuming a constant loss rate, we
neglect the back action of the incoming atoms on the frequency and the quality factor of the
cavity mode, an approximation which could be relaxed only by handling the complete cavity-
atom problem. The operators can be factored as âλ = ãλ e−iωλt and σ̂±j = σ̃±j e±i(�−k · vj )t ,
isolating the variable envelopes which are easier to integrate numerically.

Furthermore, if the cavity lifetime is much shorter than the superradiant lifetime
(1/� � TSR), then it is convenient to first integrate equation (16) approximately through
a Green’s function method by assuming the atom does not evolve significantly within one
cavity lifetime [28],

âλ(t) ≈ ãλ(0) e−(iωλ+�)t +
N∑

j=1

χ∗
λ (rj )gλj (t)σ̂−j , for �TSR 
 1, (17)

where gλj (t) ≡ (1 − exp[(−i�λj − �)t])/(i�λj + �) with detuning between cavity and
atom resonance is defined as �λj ≡ ωλ − (� − k · vj ). Essentially, each atom responds
to the emission from all atoms accumulated over one cavity lifetime. This result can then

5
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be inserted into equations (14) and (15), defining the detuning between atom resonances
�ij ≡ k · (vi − vj ), to yield

˙̃σ zj = −2
∑

λ

{
χλ(rj ) e(−i�λj −�)t σ̃+j ãλ(0) + χ∗

λ (rj ) e(i�λj −�)t σ̃−j ã
†
λ(0)

+
N∑

i=1

{
χλ(rj )χ

∗
λ (ri )gλi(t) e−i�ij t σ̃+j σ̃−i + χ∗

λ (rj )χλ(ri )g
∗
λi(t) ei�ij t σ̃−j σ̃+i

}}
, (18)

˙̃σ +j =
∑

λ

{
χ∗

λ (rj ) e(−i�λj −�)t σ̃zj ãλ(0) +
N∑

i=1

χ∗
λ (rj )χλ(ri )g

∗
λi(t) ei�ij t σ̃zj σ̃−i

}
. (19)

The field intensity, square of equation (17), can then be produced from the atomic state by
first numerically integrating these reduced equations. The terms linear in ãλ(0) represent the
negligible action by the initial field. The quadratic terms involve feedback from all other atoms
that generates superradiance. Note that on resonance (�λj = 0) we arrive at the expected time
scale, for t 
 1/�, through the coefficient

χ∗
λ (rj )χλ(ri )gλj (t) = µ0µ

2ωλ

2h̄Vλ

2Q

ωλ

VλU
∗
λ (rj )Uλ(ri ) = 1

2T cav
1

VλU
∗
λ (rj )Uλ(ri ). (20)

For significant amplification, the number of interacting atoms must be large and it becomes
prohibitively difficult to solve the 2N coupled equations of motion. Instead one can dice the
atomic distribution in phase space into finite close-packed cells so that the number of cells is
computationally feasible and the pertinent distribution and field profile features are retained.
These constraints typically imply that the number of atoms per cell is at least ten. In this case,
the correlation between the atomic population and photon number is inconsequential (i.e. atom
stimulation rate is not significantly limited by the stored energy) and the expectation value of
the operator products can be factored as 〈σ̃+j ãλ〉 ≈ 〈σ̃+j 〉〈ãλ〉. The sum over atoms can then
be replaced with the multiple sum over cell indices,

N∑
j=1

fj (rj , vj ) →
∑

i

∑
j

∑
k

∑
l

Nijklfijkl

(〈x〉cell
i , 〈y〉cell

j , 〈z〉cell
k , 〈v‖〉cell

l

)
, (21)

provided the atom position and velocity are replaced with the mean cell position rj → 〈r〉cell
and velocity vj → 〈v〉cell and the atom operators now represent the typical atom in the
cell. The number of atoms in cell {i, j, k, l} is designated as Nijkl , and only the parallel
component of velocity is relevant. The cellular equations of motion can then be numerically
integrated given the initial expectation values, atom and field distribution, atom resonance and
moment, and field resonance. Collisions can be simulated by introducing a random phase
factor, depending on the number of atoms in the cell, to the atom operators between time
steps. Assuming an initially inverted atomic population, superfluorescence can be simulated
by assuming zero photons present and an initial ‘tipping angle’, 〈σ̃zj 〉(t = 0) = 2/

√
Nat, of

the Bloch vector representing spontaneous atom state fluctuations [25]. Likewise, Casimir-
stimulated superradiance may be simulated by assuming the same tipping angle and initial
field amplitude 〈ãλ〉(t = 0) = √

Nmax
Cas , given the parametric amplification process generates a

coherent state of the field.

4. Discussion of numerical results and conclusions

The coupled equations of motion, equations (14)–(16), were integrated by Runge–Kutta
method for a small sample of Na atoms traversing a planar-concave optical cavity through the

6



J. Phys. A: Math. Theor. 41 (2008) 164026 J H Brownell et al

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

0.0

5.0×10
7

1.0×10
8

1.5×10
8

2.0×10
8

Ph
ot

on
 n

um
be

r 

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

0.85

0.9

0.95

1

1.05

σ z

Figure 2. Dynamics of superradiant amplification of Casimir photons (assumed in the number of
102) and competition with superfluorescence. On the left plot, the superradiant emitted photons
(solid line, black) compared to the superfluorescence in the absence of Casimir photons (dotted
line, red) are depicted versus time. The dot-dashed curve in green indicates the field strength profile
felt by the atoms. On the right plot, the atomic inversion populations for superradiant (solid line,
black) and superfluorescence (dotted line, red) are also plotted versus time. The dot-dashed curve
in green indicates the degree of conservation of the Bloch vector length during the simulation. The
simulation is performed for Na atoms with Q = 109, Nat = 1010, 1 m s−1 atom velocity, 10 mK
temperature. The relevant time scales are 1/� = 0.18 s, T cav

1 = 106 s, TSR = 10−4 s and Doppler
dephasing time T ∗

2 = 63 ms.

diameter at 10% of the cavity length height above the planar mirror. The cavity is tuned so that
the first longitudinal TEM00 Gaussian mode is resonant with the atoms. The atom distribution
was divided into five cells varying in velocity symmetrically about the mean speed. The number
of atoms, cavity quality, atom mean speed, atom transverse temperature (i.e. velocity spread)
and initial photon population were varied to identify promising configurations and sensitivity
of the superradiant output. We found that there is a range of configurations, corresponding
to the high end of experimental feasibility, that achieve a high degree of discrimination
between the Casimir-stimulated superradiant and the superfluorescent emission. In figure 2,
we show the typical emission profile (left panel) and atomic inversion population (right panel).
As suggested above, the superfluorescent emission is suppressed if the atoms leave the field
mode region before its amplification can develop. Even a single photon in the cavity can
generate a signal 60% above the superfluorescent background. Atom numbers too high or
too low, depending primarily on Q and atom speed, allow both cases to develop fully or very
little, respectively. Superradiant amplification is quite effective for sufficiently high gain,
easing RF detector sensitivity requirements. The gain is very sensitive to Nat and Q and the
atom transit time (∝1/vat). Also, the strong discrimination in amplification indicated by η in
table 1 implies that the detector response time need not be a significant constraint, as would
be the case if the delay time should be measured. The discrimination ratio is fairly insensitive
to temperature, suggesting that a slowed beam rather than a trap could be used, providing
larger Nat. Strong amplification necessarily results in a large fraction of the atoms driven to
their ground state. Therefore, probing the atomic beam ground state through D-line excitation
after it transits the cavity, as we had proposed in [19], is a viable option that avoids detector
losses in the cavity. The high values of Nat and Q would be eased significantly if the number
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Table 1. Configurations yielding effective discrimination between Casimir superradiant signals
and superfluorescence noise. The degree of discrimination is indicated by the ratio of the peak
intensity for the SR case to the SF case (η) and the analogous ratio of the ground-state population
after the atoms exit the cavity (ξ ). The ground-state population of the atoms near resonance is
given by ρSR

gnd = (1 − 〈σz(� ≈ 0)〉)/2. The superradiant lifetime for these cases is in the range of

TSR = 1 − 100 µs, roughly 103 times less than the cavity decay time, implying �TSR � 1.

N cas
max Nat vat (m s−1) Q Tat (K) 〈a†a〉 (peak) η ρSR

gnd (%) ξ

102 1 × 1010 1 1 × 109 0.01 1.8 × 108 15 8.5 15
102 1 × 1010 1 2 × 109 0.01 9.6 × 108 26 34 26
102 1 × 1010 1 4 × 109 0.01 2.1 × 109 31 39 20
102 5 × 109 1 1 × 109 0.01 5.1 × 105 14 0.049 14
102 2 × 1010 1 1 × 109 0.01 8.2 × 109 1.2 49 1.8
102 4 × 1010 1 1 × 109 0.01 2.4 × 1010 1.0 23 7.3
10 1 × 1010 1 1 × 109 0.01 4.5 × 107 3.6 2.1 3.6

1 1 × 1010 1 1 × 109 0.01 2.0 × 107 1.6 0.95 1.6
102 1 × 1010 1 1 × 109 0.1 1.0 × 108 15 4.6 15
102 1 × 1010 1 1 × 109 1 9.4 × 107 15 4.3 15
102 1 × 1010 1 1 × 109 10 9.3 × 107 15 4.3 15
102 2 × 1010 2 1 × 109 0.01 6.3 × 106 30 0.11 30
102 2 × 1010 2 2 × 109 0.01 1.8 × 107 45 0.26 45
102 2 × 1010 2 4 × 109 0.01 3.0 × 107 56 0.4 56
102 1 × 1010 2 1 × 109 0.01 6.7 × 104 28 2.5 × 10−3 28
102 4 × 1010 2 1 × 109 0.01 5.4 × 109 22 48 22
102 1 × 1011 10 1 × 109 0.01 4.2 × 104 760 7 × 10−5 680
102 4 × 1011 10 1 × 109 0.01 2.9 × 108 650 0.11 650
102 1 × 1012 10 1 × 109 0.01 8.7 × 1011 42 25 8.6
102 1 × 1011 10 2 × 109 0.01 5.3 × 104 840 8.3 × 10−5 760
102 1 × 1011 10 4 × 109 0.01 6.0 × 104 890 9.1 × 10−5 810

of initial Casimir photons is increased. Equation (2) implies NCas
max = 0.7, 6, 370, 106 for

Qε = 0.5, 1, 2, 3. The rapid change in initial photon population NCas
max due to Q for a given

modulation mechanism is not taken into account in table 1. One caveat to the above results
and discussion is that the computed time for the superradiant burst to develop is far longer than
the standard prediction, equation (6). The configurations tested imply �TSR � 1, in violation
of the approximation condition under which equation (6) was derived. Indeed, the reduced
equations of motion, equations (17) and (19), were quite unstable under these conditions.
As we have shown, the standard result develops naturally from the general theory given a
lossy environment. The transition to a low loss environment appears to have a dramatic effect
delaying the field growth. We are currently studying the origin and domain of validity of this
effect.
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